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Future: Simply scatter nodes in any 
dimensional space. No connectivites, thus 
no mappings/transformations
To go from 2D to 3D, changing the code is 
much more simple.

Current vs. Future Spatial Discretization for Modeling PDEs

Current: All methods define elements 
or volumes. Requires
mappings/transformations. 
Easier in 2D, computation in 
3D  is nightmarish. 



Current: Mesh refinement does not follow
the shape of the feature, here, trying to

capture a cyclone. Thus less effective in 
terms of accuracy and computational cost.

Future: Since nodes can be placed wherever 
needed due to no meshes, refinement occurs 
where most needed, here according to the 
gradient of the vorticity. Thus, much less pts. 
and computation are needed.

Current vs. Future Local Refinement



Allows for hybridization with other numerical methods
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Current: Uses Voronoi mesh 
can not cot conform to 
coastal topography. Need to 
keep track of hexagon edges, 
centers, and vertices.

Future: RBF-FD can easily conform to 
coastlines and only needs: 1) point 
locations and 2) the distances between 
them. Then in open ocean, one can use 
whatever (FV, FE, SE, FD).

Current vs. Future Treatment of Boundaries, etc.



Shallow water wave equations

Simplest equations to describe the evolution of the horizontal structure of a fluid in 
response to forcings, such as gravity and rotation.

Basic Properties
• Set of nonlinear hyperbolic equations derived from physical conservation laws
• Horizontal scales of motion >> Vertical scales of motion
• Vertical velocity and all derivatives in vertical not present
• It is a 2D model.

Areas of Application
• Atmospheric flows
• Tsunami prediction
• Planetary flows
• Storm surge
• Dam breaking

Netherlands Overflowing Jupiter’s atmosphere



GA RBFs



Convergence and Cost Efficiency of RBF-FD 

R = Number of subdivisions of each cube face
N = Degree of Legendre poly. in each square

NCAR SPH Model: 182,329 SPH bases (30km)

RBF-FD gave first evidence that this model,

the standard of comparison, was not so
accurate.

Ref: NCAR SPH Model

Ref: RBF-FD

Perfomance on Intel i7 CPU



Multi – CPU and Multi – GPU performance: 2.6M nodes on sphere (15km)
(Elliott et al., 2017)
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Intel Broadwell CPU 

36 cores/node, 72 nodes, 2592 cores

6 Teraflops4.5 Teraflops

Both are > 𝟏𝟎𝟎𝑿 speedups over the highest achieved performance by the previous 
single device GPU implementation.

Latest GPU and CPU architectures for HPC



Day 6: Unstable vortex dynamics

Shallow water wave equations on the sphere:
Evolution of a highly unstable wave 

Day 3: Initial Signs of Instability



RBF-FD 

Spectral Element 

Discontinuous Galerkin

Finite Volume 

Vorticity at 

“ Truth”  0.35    x  0.35

DG, SE, RBF-FD



2D Compressible Navier-Stokes  (Flyer, Barnett, Wicker, JCP, 2016)

First paper in literature to consider using polyharmonic spline (PHS) RBF with 
high-order polynomials.

WHY? Possible explanation:

From a historical perspective, before RBF-FD, applications of RBFs were global.

1. If PHS RBFs were used, they were used in conjunction with low-order polynomials.
Role of polynomials guarantee non-singularity of RBF interpolation matrix

for unusual node layouts.
The role of capturing the physics was the left to the RBFs.

2. Using high-order polynomials on a global scale can be dangerous
Runge phenomena near boundaries.

RBF-FD gives the approximation at the center of the stencil and not at the edges.

3. PHS RBFs were not as nearly as popular as infinitely smooth RBFs for PDEs.
For the high computation price of global RBFs, you want the fast convergence and accuracy.

Let’s briefly explore PHS RBF-FD convergence and accuracy before test cases.
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Polynomials in Control (Flyer, Barnett, Wicker, JCP, 2016)
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error in approximating d/dx of 

near the center of a 37 node hex. stencil, using r3 and r7 with corresponding polynomials

Dashed line machine round-off error of 10-15/h



Accurate time evolution of Temperature   

With RBF-FD, easy to explore the 
intrinsic capabilities of different 
layouts. Same Code.

Hexagonal have a long history, 
never became ‘mainstream’ due 
to implementation complexities.

Basis functions used:

RBF 𝒓 𝟓 + Up to 4th degree polys.

Hyperviscosity use GA-based or PHS-based

2D Compressible Navier-Stokes 



Comparisons on different node layouts: change 1 line of code

Comparison:

Cartesian:   Most unphysical artifacts (`wiggles’), 1st rotor not formed at 800m

Hexagonal: Excellent results; now easy to implement opposed to past

Scattered:   Little performance penalty but one gains greatly geometric flexibility

800m

400m

200m

Only showing half of domain due to symmetry

Ugh!!



Comparisons to other numerical methods

At high resolutions, 100m and under, most methods perform well.
Key issue: Data-based initialization of weather prediction models > 500m 
Below: Comparisons from the literature, at 400m resolution?

At this coarse resolution, only the RBF-FD calculations shows the beginning of second rotor 
(does it on Cartesian, hexagonal, and scattered node sets) and can perform at 800m.



Same test problem, but with no physical viscosity

25m resolution (RBF-FD, hex nodes) Details when using different resolutions



Distributing variable node density on sphere
(Fornberg and Flyer, 2015)

Below: Gray scale rendering of the file topo.mat
in Matlab’s Mapping toolbox

Top right:

N = 105,419 nodes rendering of the topo map above
Computational speed in MATLAB still around
11,000 nodes per second.

Next step in modeling (Bayona et al. 2015) :
Take elevation physically taken into account



Electric 
Current

Thunderstorms
(measured data)

3D Elliptic PDE:  Modeling Electrical Currents in the Atmosphere

52 km

8 km

3D Node Layout
to 8km

Nested shells
8km to 52km



Sparsity pattern of 3D elliptic operator (99.998% zeros) 

Before any node reordering After using reverse Cuthill- McKee

Result:  Testing with data, 4.2M nodes
100 km. lat. – long. By   600m vertical, 31 mins on laptop using GMRES 

GitHub Open Source Code:   Bayona et al. , A 3-D RBF-FD solver for modelling the atmospheric Global 
Electric Circuit with topography (GEC-RBFFD v1.0), Geosci. Model Dev. 2015.

3D node layout

Nested Shell

Nicely banded
but GMRES
CRASHES



Tracer Transport in 3D Spherical Shell 

∂q / ∂t  +  v(x,y,z,t)  ∙            q  = 0

Specs:  
Nodes: Icosahedral on nested spheres

RBF: r3 with up to 5th-order polynomials on sphere
FD4:      In vertical
Stencil: n = 55
No Hyperviscosity Needed! RBF-FD

FD4

Concentration of tracer q plotted



Comparison to other community models based on finite volume

2◦ by 300m
(N = 360K)

1◦ by 200m
(N = 2.45M)

1/2◦ by 100m
(N = 19.6M)

CAM-FV 0.20 0.05 0.02

Mcore(FV) 0.17 0.05 0.01

RBF-FD 0.03 0.003 0.0005

Numbers represent error in L2

FV is used for its conservation properties, but sacrifice is accuracy and convergence.

Comment: The need for hyperviscosity depends on how long it takes for the spurious 
eignmodes that are close to machine rounding to grow.



Conclusions

Established:

- RBF-FD latches onto the physics at much coarser resolutions than other numerical 
methods, giving higher accuracy and convergence

- RBF-FD have shown strong linear scaling on 
on the latest HPC platforms

- Startup cost for modeling with RBF-FD is cheap
due to their algorithmic simplicity

Some recent review material
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2. B. Fornberg and N. Flyer, 2015
Solving PDEs with Radial Basis Functions, 
Acta Numerica.

3.   B. Fornberg and N. Flyer, 2015
A Primer on Radial Basis Functions with 
Applications to the Geosciences, SIAM Press. 


